Abstract
The bionic flapping-wing robotic aircraft is inspired by the flying ways of birds, which is regarded as a rigid-flexible coupling system. Our research focuses on the control system design of the aircraft, which makes the aircraft have great advantages such as high flexibility, low energy consumption and so on. However, flexible wings might produce the unexpected vibration and deformation under the influence of air flow. The vibration will degrade the flight performance, even shorten the lifespan of the aircraft. Therefore, designing an effective control method for suppressing vibrations of flexible wings is significant in practice. We have made several flapping-wing robotic aircrafts for experiments. The control system is designed for vibration control and autonomous flying of the flapping-wing robotic aircrafts.