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Abstract— In this paper, a novel adaptive dynamic
programming (ADP) algorithm, called “iterative zero-sum
ADP algorithm,” is developed to solve infinite-horizon discrete-
time two-player zero-sum games of nonlinear systems. The
present iterative zero-sum ADP algorithm permits arbitrary
positive semidefinite functions to initialize the upper and lower
iterations. A novel convergence analysis is developed to guarantee
the upper and lower iterative value functions to converge to the
upper and lower optimums, respectively. When the saddle-point
equilibrium exists, it is emphasized that both the upper and lower
iterative value functions are proved to converge to the optimal
solution of the zero-sum game, where the existence criteria of
the saddle-point equilibrium are not required. If the saddle-
point equilibrium does not exist, the upper and lower optimal
performance index functions are obtained, respectively, where
the upper and lower performance index functions are proved to
be not equivalent. Finally, simulation results and comparisons
are shown to illustrate the performance of the present method.

Index Terms— Adaptive critic designs, adaptive dynamic
programming (ADP), approximate dynamic programming,
neurodynamic programming, optimal control, zero-sum game.

I. INTRODUCTION

ALARGE class of real systems are controlled by more
than one controller or decision maker with each using an

individual strategy. These controllers often operate in a group
with a general performance index function as a game [1]–[6].
Two-player zero-sum games, capturing two players’ behaviors
in which the success of one player in selecting strategies
depends strictly on the choices of the other player, have
been widely applied to decision making problems [7]–[9].
In these situations, many control schemes are presented in
order to reach some form of optimality [10], [11]. Traditional
approaches to deal with zero-sum games are to find the
optimal solution or the saddle-point equilibrium of the games.
There are many works discussing the existence criteria of
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the saddle-point equilibrium of zero-sum games [12]–[14].
In real-world applications, however, the existence criteria
of the saddle-point equilibrium for zero-sum games are so
difficult to satisfy that many applications of the zero-sum
games are limited to linear systems [15]–[18]. For many zero-
sum games of nonlinear systems, it is generally assumed that
the saddle-point equilibrium exists, which is guaranteed by the
assumption of L2 gain [12], [19], and then, the optimal control
of the zero-sum games for the nonlinear systems is obtained.
Unfortunately, for real-world zero-sum games, especially for
nonlinear systems, the L2 gain cannot generally be guaranteed,
which means the existence assumption of the saddle-point
equilibrium for the zero-sum games cannot be realized. Thus,
traditional optimal control for zero-sum games of nonlinear
systems is actually difficult to apply. Therefore, a new
method is necessary to obtain the saddle-point equilibrium
of the zero-sum games without the complex existence
criteria.

Dynamic programming is a systematic method for
addressing dynamic optimization and optimal control
problems [20]–[22]. However, due to the “curse of
dimensionality” [23], it is often computationally untenable
to run dynamic programming to obtain the optimal solution.
Adaptive dynamic programming (ADP), proposed by
Werbos [24], [25], overcomes the curse of dimensionality
problem in dynamic programming by approximating the
performance index function forward-in-time and becomes
an important brainlike intelligent method of approximate
optimal control for nonlinear systems [26]–[40]. Iterative
methods, which include value and policy iterations [41]–[55],
respectively, are primary tools in ADP to solve optimal zero-
sum games [7], [56]. In [57], ADP was derived to solve the
discrete-time zero-sum game for linear systems with applica-
tions to H∞ control, in which the state and action spaces were
continuous. In [58], ADP was used along with two-player pol-
icy iterations to solve the feedback strategies of a continuous-
time zero-sum game that appeared in L2-gain optimal control
of nonlinear systems affine in inputs with the control policy
having saturation constraints. In [59], a near optimal solution
for discrete-time affine nonlinear control systems in the pres-
ence of partially unknown internal system dynamics and dis-
turbances was solved by a zero-sum two-player ADP method,
where the disturbance was considered as a control input of the
system. In [60], an online adaptive policy learning algorithm
based on ADP was proposed for learning the real-time solution
to zero-sum games, which appeared in the H∞ control
problem. In [18], an online robust ADP algorithm was
proposed for two-player zero-sum games of continuous-time
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unknown linear systems with matched uncertainties. Although
ADP has achieved more and more attentions on solving
zero-sum games, it is worth mentioning that the existing ADP
algorithms, i.e., the traditional zero-sum ADP algorithms,
possess inherent shortcomings, which are difficult for real
applications.

First, linear and affine nonlinear systems with quadratic
utility functions were generally considered in traditional zero-
sum ADP algorithms [18], [57]–[59]. The zero-sum ADP
algorithms for other types of systems were seldom considered.
Second, we point out that nearly all the traditional zero-sum
ADP algorithms [7], [18], [56]–[59] required satisfying the
L2-gain, which guarantees the existence of the saddle-point
equilibrium of zero-sum games. However, the L2-gain is diffi-
cult to satisfy in real applications, which causes the existence
justification of the saddle-point equilibrium invalid. To the
best of our knowledge, only in [61], the zero-sum ADP for
continuous-time affine nonlinear systems with quadratic utility
functions was proposed where the L2-gain was not considered.
The research on the zero-sum ADP algorithm for discrete-time
nonlinear systems with a general performance index function
has not been considered. This motivates our research.

In this paper, a new iterative zero-sum ADP algorithm is
developed to solve infinite-horizon optimal control problems
for discrete-time two-player zero-sum games of general non-
linear systems with general form utility functions. Initialized
by arbitrary positive semidefinite functions for the upper and
lower iterations, the upper and lower iterative value functions
using the iterative zero-sum ADP algorithm can reach the
upper and lower optimums of the zero-sum games, which
satisfy the upper and lower Isaacs equations, respectively.
A novel convergence analysis method is developed to show
that the upper and lower iterative value functions converge
to the upper and lower optimums, respectively. Optimality
of the iterative zero-sum ADP algorithm will be presented.
If the saddle-point equilibrium of the zero-sum game exists,
we emphasize that both the upper and lower iterative value
functions will converge to the optimal solution of the zero-
sum game, where the existence criteria of the saddle-point
equilibrium in the traditional zero-sum ADP algorithms are
not required. Monotonicity of the upper and lower iterative
value functions by the iterative zero-sum ADP algorithm is
also presented. It is shown that under some mild constraints
of the initial functions, the upper and lower iterative value
functions can be monotonically nonincreasing, monotonically
nondecreasing, or nonmonotonic and converge to their opti-
mums. If the saddle-point equilibrium does not exist, the upper
and lower optimal performance index functions are obtained,
respectively, where it is proved that the converged upper and
lower performance index functions are not equivalent. Finally,
simulation results and comparisons are shown to illustrate the
performance of the present method.

II. PROBLEM FORMULATIONS

In this paper, we will study the following discrete-time
nonlinear systems:

xk+1 = F(xk, uk, wk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the state vector, and uk ∈ R

m

and wk ∈ R
l are the control vectors of Players I and II,

respectively. F(xk, uk, wk) is the system function. Let x0
be the initial state. For convenience of analysis, results of
system (1) are based on the following assumption.

Assumption 1: System (1) is controllable on a compact set
�x ⊂ R

n containing the origin; the function F(xk, uk , wk)
is Lipschitz continuous for xk , uk , and wk ; xk = 0 is an
equilibrium state of system (1) under the controls uk = 0
and wk = 0, i.e., F(0, 0, 0) = 0; the feedback control
laws u(xk) and w(xk) are both continuous on �x , such that
uk = u(xk) = 0 and wk = w(xk) = 0, respectively,
for xk = 0.

Let U and W denote policy spaces of Players I and II,
respectively. Let u ∈ U and w ∈ W be the control laws
of Players I and II, respectively. Then, the infinite-horizon
performance index function J : U × W → R for state x0 can
be defined as

J (x0, u, w) =
∞∑

k=0

U(xk, uk, wk) (2)

where uk = u(xk), wk = w(xk), and we let the utility function
U(xk, uk, wk) be a continuous function for xk , uk , and wk ,
which is positive definite for xk and uk , and negative definite
for wk . The triplet {J ;U,W} constitutes the normal form of
the zero-sum dynamic game (zero-sum game in brief) [12], in
the context of which we can introduce the notion of a saddle-
point equilibrium.

Definition 1: Given a zero-sum dynamic game {J ;U,W},
a pair of control laws (u∗, w∗) ∈ U × W constitute a saddle-
point solution [12] if, for all (u, w) ∈ U × W
J (xk, u∗, w) ≤ J ∗(xk) := J (xk, u∗, w∗) ≤ J (xk, u, w∗). (3)

J ∗(xk) is the optimal performance index function of the game.
Given a zero-sum game {J ;U,W} in a normal form, we

define the upper optimal performance index function as

J
∗
(xk) = min

u∈U
max
w∈W

J (xk, u, w) (4)

and the lower optimal performance index function can be
defined as

J∗(xk) = max
w∈W

min
u∈U

J (xk, u, w) (5)

with the obvious inequality [10]–[13] J ∗(xk) ≤ J
∗
(xk). If the

optimal performance index function exists, then we have

J
∗
(xk) = J∗(xk) = J ∗(xk). (6)

According to the principle of optimality [12], the upper
optimal performance index function J

∗
(xk) satisfies the fol-

lowing discrete-time Isaacs equation:
J

∗
(xk) = min

uk
max
wk

{U(xk, uk , wk) + J
∗
(F(xk, uk, wk))}.

(7)

The lower optimal performance index function J∗(xk) satisfies
the following discrete-time Isaacs equation:

J ∗(xk) = max
wk

min
uk

{U(xk, uk , wk) + J∗(F(xk, uk, wk))}.
(8)
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Generally speaking, the existence of the saddle-point
equilibrium of the zero-sum game {J ;U,W} is difficult to
justify, especially for nonlinear systems. Thus, it is nearly
impossible to obtain the saddle-point equilibrium by directly
solving inequality (3). In this situation, obtaining the upper
and lower optimal performance index functions is a necessary
method to achieve the saddle-point equilibrium. Unfortunately,
the upper and lower optimal performance index functions
J

∗
(xk) and J ∗(xk) are also difficult to obtain, due to the diffi-

culty for solving the discrete-time Isaacs equations (7) and (8).
To overcome this difficulty, a new iterative algorithm based on
ADP will be developed.

III. ITERATIVE ADP ALGORITHM FOR

DISCRETE-TIME ZERO-SUM GAMES

In this section, the discrete-time zero-sum game for
system (1) will be solved by ADP. New convergence and
monotonicity analysis methods will be established in this
section. Optimality analysis will be presented to show that
the upper and lower iterative value functions will converge
to the optimums. If the saddle-point equilibrium of the
zero-sum game exists, the upper and lower iterative value
functions are shown to converge to the optimal solution
of the zero-sum game, where the existence criteria of the
saddle-point equilibrium can effectively be avoided.

A. Derivations of the Iterative Zero-Sum ADP Algorithm

In the developed iterative zero-sum ADP algorithm, the
value function and control law are updated at every iteration,
with the iteration index i increasing from 0 to infinity. For
xk ∈ R

n , let the initial function �(xk) ≥ 0 be an arbitrary
positive semidefinite function. Then, let the upper initial value
function be expressed as

V 0(xk) = �(xk). (9)

Then, the iterative control law ω0(xk, uk) can be computed
as

ω0(xk, uk) = arg max
wk

{U(xk, uk, wk) + V 0(xk+1)}
= arg max

wk
{U(xk, uk, wk) + V 0(F(xk, uk, wk))}

(10)

where V 0(xk+1) = �(xk+1). The iterative control law v0(xk)
can be obtained by

v0(xk) = arg min
uk

{U(xk, uk, ω0(xk, uk))

+V0(F(xk, uk, ω0(xk, uk)))}. (11)

Letting ω0(xk) = ω0(xk, v0(xk)), we can obtain the upper
iterative control pair [v0(xk), ω0(xk)].

For i = 1, 2, . . . , the upper iterative value function can be
updated as

Vi (xk) = min
uk

max
wk

{U(xk, uk, wk) + V i−1(F(xk, uk, wk))}
= U(xk, v i−1(xk), ωi−1(xk))

+ V i−1(F(xk, v i−1(xk), ωi−1(xk))). (12)

For i = 1, 2, . . . , the iterative control law ωi (xk, uk) for
the upper iterative value function can be computed as

ωi (xk, uk) = arg max
wk

{U(xk, uk, wk) + V i (xk+1)}
= arg max

wk
{U(xk, uk, wk) + V i (F(xk, uk, wk))}.

(13)

The iterative control law v i (xk) can be obtained by

v i (xk) = arg min
uk

{U(xk, uk, ωi (xk, uk))

+ Vi (F(xk, uk, ωi (xk, uk)))}. (14)

Letting ωi (xk) = ωi (xk, v i (xk)), the upper iterative control
pair [v i (xk), ωi (xk)] can be constructed.

For xk ∈ R
n , let the initial function �(xk) ≥ 0 be an

arbitrary positive semidefinite function. Let the lower initial
value function be expressed as

V 0(xk) = �(xk). (15)

Then, the iterative control law v0(xk, wk) can be computed as

v0(xk, wk) = arg min
uk

{U(xk, uk, wk) + V 0(xk+1)}
= arg min

uk
{U(xk, uk, wk) + V 0(F(xk, uk , wk))}

(16)

where V 0(xk+1) = �(xk+1). The iterative control law ω0(xk)
can be obtained by

ω0(xk) = arg max
uk

{U(xk, v0(xk, wk),wk)

+ V0(F(xk, v0(xk, wk),wk))}. (17)

Letting v0(xk) = v0(xk, ω0(xk)), we can obtain the lower
iterative control pair [v0(xk), ω0(xk)].

For i = 1, 2, . . . , the lower iterative value function can be
updated as

V i (xk) = max
wk

min
uk

{U(xk, uk, wk) + V i−1(F(xk, uk , wk))}
= U(xk, v i−1(xk), ωi−1(xk))

+ V i−1(F(xk, v i−1(xk), ωi−1(xk))). (18)

Then, the iterative control law v i (xk, wk) can be computed as

v i (xk, wk) = arg min
uk

{U(xk, uk, wk) + V i (xk+1)}
= arg min

uk
{U(xk, uk, wk) + V i (F(xk, uk, wk))}.

(19)

The iterative control law ωi (xk) can be obtained by

ωi (xk) = arg max
uk

{U(xk, v i (xk, wk),wk)

+ Vi(F(xk, v i (xk, wk),wk))}. (20)

Letting v i (xk) = v i (xk, ωi (xk)), we can obtain the lower
iterative control pair [v i (xk), ωi (xk)].

From the iterative zero-sum ADP algorithm (9)–(20), the
upper iterative value function V i (xk) is used to approximate
the upper optimal performance index function J

∗
(xk) and

the lower iterative value function V i (xk) is used to approxi-
mate the lower optimal performance index function J ∗(xk).



960 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

Thus, the iteration (9)–(14) can be called “upper iterative
zero-sum ADP algorithm.” The iteration (15)–(20) can be
called “lower iterative zero-sum ADP algorithm.” Therefore,
when i → ∞, the developed iterative zero-sum ADP algo-
rithm should be convergent, such that V i (xk) and V i (xk)
converge to their optimal ones. If the saddle-point equilibrium
exists of the zero-sum game, both the upper and lower iterative
value functions are expected to converge to the saddle-point
equilibrium of the zero-sum game. In Section III-B, we will
show such properties of the developed iterative zero-sum ADP
algorithm.

B. Property Analysis

In [62], considering nonlinear systems with single con-
trol input, it was proved that the iterative value function is
monotonically nondecreasing and converges to the optimum
by the iterative ADP algorithm if the algorithm is initialized by
a zero initial value function. For arbitrary positive semidefinite
initial functions and multicontroller systems, however, the
analysis method in [62] is not applicable here. In [63] and [64],
a “functional bound” method was proposed for the iterative
ADP algorithm with single controller. In this paper, inspired
by [63] and [64], convergence analysis methods for the
zero-sum ADP algorithm will be developed in this section.

Theorem 1: For the zero-sum game {J ;U,W} of
system (1), the upper and lower optimal performance index
functions J

∗
(xk) and J ∗(xk) in (4) and (5) are positive

definite for xk .
Proof: According to Assumption 1, we can easily derive

J∗(xk) = J
∗
(xk) = 0 (21)

for xk = 0. Letting wk ≡ 0, k = 0, 1, . . . , we can get

J (xk, u, 0) =
∞∑

i=k

U(xi , ui , 0) > 0 (22)

for all xk 
= 0 and all u ∈ U , as the utility function is positive
definite for xk and uk .

According to (4), for all xk 
= 0, the optimal upper
performance index function satisfies

J
∗
(xk) = min

u∈U
max
w∈W

J (xk, u, w)

≥ min
u∈U

J (xk, u, 0) > 0. (23)

According to (5), for all xk 
= 0, the optimal lower perfor-
mance index function satisfies

J ∗(xk) = max
w∈W

min
u∈U

J (xk, u, w)

= max
w∈W

J (xk, μ
∗, w)

≥ J (xk, μ
∗, 0) > 0. (24)

The proof is complete.
Let ε ≥ 0 be a nonnegative real number. Define a state

set �ε as

�ε = {xk : xk ∈ �x , ‖xk‖ ≤ ε}. (25)

Then, we can derive the following corollary.

Corollary 1: Let �ε be defined as in (25). For any ε > 0,
we can derive the following.

1) inf{J
∗
(xk) : xk ∈ �x\�ε, ε > 0} > 0.

2) inf{J∗(xk) : xk ∈ �x\�ε, ε > 0} > 0.
Lemma 1: For i = 0, 1, . . . , let the upper and lower

iterative value functions V i (xk) and V i (xk) be updated by
(12) and (18), respectively, where V 0(xk) and V 0(xk) satisfy
(9) and (15). Then, for any i = 0, 1, . . . , the upper and
lower iterative value functions V i (xk) and V i (xk) are positive
definite functions of xk .

Proof: The statement can be proved by mathematical
induction. We first consider the upper iterative value function.
For i = 0, according to (13), we have

V 1(xk) = min
uk

max
wk

{U(xk, uk, wk) + V 0(xk+1)}. (26)

According to Assumption 1, it is easy to know V1(xk) = 0 for
xk = 0. For any xk 
= 0, we have

V 1(xk) = min
uk

max
wk

{U(xk, uk, wk) + V 0(xk+1)}
≥ min

uk
{U(xk, uk , 0) + V 0(F(xk, uk, 0))}

> 0. (27)

Assume that the statement holds for i = l − 1, l = 1, 2, . . . ,
i.e., V l−1(xk) > 0, ∀xk 
= 0 and V l−1(xk) = 0, for xk = 0.

Then, for i = l, according to Assumption 1, we have
V l+1(xk) = 0 and xk = 0. For all xk 
= 0, we can get

V l+1(xk) = min
uk

max
wk

{U(xk, uk, wk) + V l(xk+1)}
≥ min

uk
{U(xk, uk, 0) + V l(F(xk, uk, 0))}

> 0. (28)

Thus, we have V i+1(xk) is positive definite for any
i = 0, 1, . . . Next, we consider the lower iterative value
function. For i = 0, according to (19), we have

V 1(xk) = max
wk

min
uk

{U(xk, uk, wk) + V 0(xk+1)}. (29)

According to Assumption 1, it is easy to know V 1(xk) = 0
for xk = 0. For any xk 
= 0, we have

V 1(xk) = max
wk

{U(xk, v1(xk, wk),wk)

+ V 0(F(xk, v1(xk, wk),wk))}
≥ U(xk, v1(xk, 0), 0)

+ V 0(F(xk, v1(xk, 0), 0))

> 0. (30)

Assume that the statement holds for i = l − 1, l = 1, 2, . . . ,
i.e., V l−1(xk) > 0, ∀xk 
= 0. Then, for i = l, according to
Assumption 1, we have V l+1(xk) = 0 and xk = 0. For all
xk 
= 0, we can get

V l+1(xk) = max
wk

{U(xk, v l(xk, wk),wk)

+ V l(F(xk, v l(xk, wk),wk))}
≥ U(xk, v l(xk, 0), 0)

+ V l(F(xk, v l(xk, 0), 0))

> 0. (31)
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Thus, V i+1(xk) is positive definite for any i = 0, 1, . . . The
mathematical induction is complete.

Lemma 2: For i = 0, 1, . . . , let the upper and lower
iterative value functions V i (xk) and V i (xk) be updated by
(12) and (18), respectively, where V 0(xk) and V 0(xk) satisfy
(9) and (15), respectively. If for all xk ∈ �x , �(xk) ≥ �(xk),
then for any i = 0, 1, . . . we have

V i (xk) ≤ V i (xk). (32)

Proof: First, the conclusion obviously holds for i = 0.
For i = 1, we have

V 1(xk) = min
uk

max
wk

{U(xk, uk , wk) + V 0(xk+1)}
≥ max

wk
min

uk
{U(xk, uk , wk) + V 0(xk+1)}. (33)

According to �(xk) ≥ �(xk) and (33), we can derive

V 1(xk) ≥ max
wk

min
uk

{U(xk, uk, wk) + V 0(xk+1)}
≥ max

wk
min

uk
{U(xk, uk, wk) + V 0(xk+1)}

= V 1(xk). (34)

Inequality (32) holds for i = 1. Using the mathematical
induction, we can derive inequality (32) for any i = 0, 1, . . .
The proof is complete.

From Theorem 1, the upper and lower optimal performance
index functions, i.e., J

∗
(xk) and J∗(xk), are positive definite

functions of xk , which satisfy (7) and (8), respectively.
On the other hand, according to Lemma 1, we can derive
that the upper and lower iterative value functions, i.e.,
V i (xk) and V i (xk), i = 0, 1, . . . , in the iterative ADP
algorithm (9)–(20) are also positive definite functions of xk .
Now, we derive an important theorem.

Theorem 2: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by the upper iteration (9)–(14).
If the optimal upper performance index function J

∗
(xk) can

be defined for all xk ∈ �x , then the upper iterative value
function V i (xk) converges to the upper optimal performance
index function J

∗
(xk) in (7) for all xk ∈ �x , as i → ∞.

Proof: The statement will be proved by the following
three steps. First, let xk ∈ �ε , where �ε is defined in (25).
According to Theorem 1 and Lemma 1, as J ∗(xk) and V i (xk),
i = 1, 2, . . . , are both positive definite functions of xk , we can
derive that

J
∗
(xk) = V i (xk) = 0 (35)

for xk ∈ �ε and ε = 0.
Second, for any i = 0, 1, . . . , let xk ∈ �x\�ε for an

arbitrary ε > 0. For a compact set �x , the upper optimal
performance index function J

∗
(xk) is upper bounded. For any

ε > 0 and xk ∈ �x\�ε , according to Corollary 1, J
∗
(xk)

is bounded, i.e., 0 < J
∗
(xk) ≤ Msup, for positive constants

0 < Msup < ∞. As 0 ≤ �̄(xk) < ∞, ∀xk ∈ �x , for all
xk ∈ �x\�ε there exist a positive constant β, such that

�(xk) ≤ β J
∗
(xk) (36)

where 1 ≤ β < ∞. For the control laws, u ∈ U and w ∈ W ,
respectively. As �x is a compact set, for any xk ∈ �x ,

we can derive that uk and wk are both finite controls. Thus,
there exists a constant η > 0, such that U(xk, uk, wk) > −η.
Then, we have

U(xk, uk , wk) + η > 0. (37)

For all xk ∈ �x\�ε , there exists a constant 0 < γ < ∞, such
that

γ (U(xk, uk, wk) + η) ≥ J
∗
(F(xk, uk , wk)). (38)

For i = 0, 1, . . . , we will prove the following inequality:

V i (xk) ≤
(

1 + β − 1

(1 + γ −1)
i

)
J

∗
(xk)

+
( i∑

j=1

1

(1 + γ −1)
j

)
(β − 1)η (39)

for all xk ∈ �x\�ε , where
∑i

j (·) = 0 for j > i .
Mathematical induction is employed to prove the conclu-

sion. According to (9) and (36), inequality (39) obviously
holds for i = 0. Now, let i = 1. We have

V 1(xk) = min
uk

max
wk

{U(xk, uk, wk) + V 0(F(xk, uk, wk))}
≤ min

uk
max
wk

{U(xk, uk, wk) + β J
∗
(F(xk, uk, wk))}

≤ min
uk

max
wk

{
U(xk, uk , wk) + β J

∗
(F(xk, uk, wk))

+ β − 1

1 + γ −1 (U(xk, uk, wk) + η)

+ β − 1

1 + γ
J

∗
(F(xk, uk, wk))

}

=
(

1 + β − 1

1 + γ −1

)

× min
uk

max
wk

{U(xk, uk, wk) + J
∗
(F(xk, uk, wk))}

+ β − 1

1 + γ −1 η

=
(

1 + β − 1

1 + γ −1

)
J

∗
(xk) + β − 1

1 + γ −1 η. (40)

Assume that the conclusion holds for i = 	−1, 	 = 1, 2, . . .
Then, for i = 	, we can obtain inequality (41), as shown at
the top of next page.

Thus, inequality (39) holds for i = 	. The mathematical
induction is complete. According to (39), letting i → ∞, for
xk ∈ �x\�ε , we can obtain

0 < lim
i→∞ V i (xk) ≤ J

∗
(xk) + γ (β − 1)η. (42)

It means that the upper iterative value function is upper
bounded as i → ∞.

Third, we will prove that the upper iterative value function
is a sum of series of positive terms. According to Lemma
1, for i = 1, 2, . . . , as V i (xk) is positive definite of xk ,
there exists a function 0 < λi (xk, uk, wk) < ∞, ∀xk, uk, wk ,
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V 	(xk) = min
uk

max
wk

{U(xk, uk, wk) + V 	−1(xk+1)}

≤ min
uk

max
wk

⎧
⎨

⎩U(xk, uk, wk) +
(

1 + β − 1

(1 + γ −1)
	−1

)
J

∗
(F(xk, uk , wk)) +

⎛

⎝
	−1∑

j=1

1

(1 + γ −1)
j

⎞

⎠ (β − 1)η

⎫
⎬

⎭

≤ min
uk

max
wk

⎧
⎨

⎩U(xk, uk, wk) +
(

1 + β − 1

(1 + γ −1)
	−1

)
J

∗
(F(xk, uk , wk)) +

⎛

⎝
	−1∑

j=1

1

(1 + γ −1)
j

⎞

⎠ (β − 1)η

+ β − 1

(1 + γ −1)
	−1

(1 + γ )
(γ (U(xk, uk, wk) + η) − J

∗
(F(xk, uk , wk)))

⎫
⎬

⎭

= min
uk

max
wk

⎧
⎨

⎩

(
1 + β − 1

(1 + γ −1)
	

)
(U(xk, uk, wk) + J

∗
(F(xk, uk , wk)))

+
⎛

⎝
	−1∑

j=1

1

(1 + γ −1)
j

⎞

⎠ (β − 1)η + 1

(1 + γ −1)
	
(β − 1)η)

⎫
⎬

⎭

=
(

1 + β − 1

(1 + γ −1)
	

)
min

uk
max
wk

{(U(xk, uk, wk) + J
∗
(F(xk, uk , wk)))} +

⎛

⎝
	∑

j=1

1

(1 + γ −1)
j

⎞

⎠ (β − 1)η

=
(

1 + β − 1

(1 + γ −1)
	

)
J

∗
(xk) +

⎛

⎝
	∑

j=1

1

(1 + γ −1)
j

⎞

⎠ (β − 1)η (41)

such that

V i+1(xk) = U(xk, v i (xk), ωi (xk)) + V i (F(xk, v i (xk), ωi (xk))

= U(xk, v i (xk), ωi (xk)) + λi (xk, v i (xk), ωi (xk))

+ (V i (F(xk, v i (xk), ωi (xk)))

− λi (xk, v i (xk), ωi (xk))) (43)

where U(xk, v i (xk), ωi (xk)) + λi (xk, v i (xk), ωi (xk)) > 0 and
V i

(
F(xk, v i (xk), ωi (xk))

) − λi (xk, v i (xk), ωi (xk)) > 0.
Let 0 < ri (xk, v i (xk), ωi (xk)) < 1, ∀xk, uk, wk , be a

positive function, such that

V i (F(xk, v i (xk), ωi (xk))) − λi (xk, v i (xk), ωi (xk))

= ri (xk, v i (xk), ωi (xk))Vi (F(xk, v i (xk), ωi (xk))). (44)

Letting

Ui (xk, v i (xk), ωi (xk))

= U(xk, v i (xk), ωi (xk)) + λi (xk, v i (xk), ωi (xk)) (45)

we have

V i+1(xk) = U(xk, v i (xk), ωi (xk))+V i (F(xk, v i (xk), ωi (xk))

= U(xk, v i (xk), ωi (xk)) + λi (xk, v i (xk), ωi (xk))

+ (V i (F(xk, v i (xk), ωi (xk))

− λi (xk, v i (xk), ωi (xk)))

= Ui (xk, v i (xk), ωi (xk)) + ri (xk, v i (xk), ωi (xk))

×V i (F(xk, v i (xk), ωi (xk)). (46)

According to (46), we can derive

V i+1(xk) =
i∑

j=0

⎛

⎝
j∏

l=0

ri+1−l (xi+1−l , v i+1−l (xi+1−l ),

× ωi+1−l (xi+1−l))

⎞

⎠

×Ui− j (xk+ j , v i− j (k + j), ωi− j (k + j)) (47)

where we define U0(·) = �(·). According to (47), the
iterative value function V i+1(xk) is a sum of series of positive
terms and forms a monotonically, which is a nondecreas-
ing sequence. As V i (xk) in (42) is upper bounded for all
xk ∈ �x\�ε , we can derive that limit of the upper iterative
value function V i (xk) exists, as i → ∞. Letting

lim
i→∞ V i (xk) = V ∞(xk) (48)

according to (12), we can derive that

V ∞(xk) = min
uk

max
wk

{U(xk, uk , wk) + V ∞(F(xk, uk, wk))}.
(49)

According to (7), we can derive that V ∞(xk) = J ∗(xk) for all
xk ∈ �x\�ε . Thus, for all xk ∈ �x , the upper iterative value
function V i (xk) converges to J

∗
(xk), xk ∈ �x . The proof is

complete.
Corollary 2: For i = 0, 1, . . . , let V i (xk) and

[v i (xk), ωi (xk)] be obtained by (15)–(20). Then, if the
lower optimal performance index function J ∗(xk) can be
defined for all xk ∈ �x , then the lower iterative value



WEI et al.: ADP FOR DISCRETE-TIME ZERO-SUM GAMES 963

function V i (xk) converges to the lower optimal performance
index function J ∗(xk) in (8), as i → ∞.

The conclusion can be proved according to the idea
of (35)–(49) and the detail is omitted here.

Theorem 3: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (9)–(14). If for all xk ∈ �x ,
inequality

V 1(xk) ≤ V 0(xk) (50)

holds, then the upper iterative value function V i (xk) is a
monotonically nonincreasing sequence for i = 1, 2, . . . , that is

V i (xk) ≤ V i−1(xk). (51)

Proof: We prove this by mathematical induction. First,
inequality (51) obviously holds for i = 1. We let i = 2.
According to (12) and (50), for all xk ∈ �x , we have

V 2(xk) = min
uk

max
wk

{U(xk, uk, wk) + V 1(xk+1)}
≤ min

uk
max
wk

{U(xk, uk, wk) + V 0(xk+1)}
= V 1(xk). (52)

Thus, inequality (51) holds for i = 2. Assume that the
conclusion holds for i = l, l = 1, 2, . . . Then, for i = l + 1,
we have

V l+1(xk) = min
uk

max
wk

{U(xk, uk, wk) + V l(xk+1)}
≤ min

uk
max
wk

{U(xk, uk, wk) + V l−1(xk+1)}
= V l(xk). (53)

Thus, inequality (51) holds for any i = 1, 2, . . . The proof is
complete.

Corollary 3: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (9)–(14). If for all xk ∈ �x ,
inequality

V 1(xk) ≥ V 0(xk) (54)

holds, then the upper iterative value function V i (xk) is a
monotonically nondecreasing sequence for i = 1, 2, . . . ,
that is

V i (xk) ≥ V i−1(xk). (55)

Corollary 4: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (15)–(20). If for all xk ∈ �x ,
inequality

V 1(xk) ≤ V 0(xk) (56)

holds, then the lower iterative value function V i (xk) is a
monotonically nonincreasing sequence for i = 1, 2, . . . , that is

V i (xk) ≤ V i−1(xk). (57)

Corollary 5: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (15)–(20). If for all xk ∈ �x ,
inequality

V 1(xk) ≥ V 0(xk) (58)

holds, then the lower iterative value function V i (xk) is a
monotonically nondecreasing sequence for i = 1, 2, . . . ,
that is

V i (xk) ≥ V i−1(xk). (59)

Theorem 4: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (9)–(14). If for all
xk ∈ �x , inequality (50) holds, then the upper iterative
value function V i (xk) satisfies

V i (xk) ≥ J
∗
(xk). (60)

If for all xk ∈ �x , inequality (54) holds, then the upper
iterative value function V i (xk) satisfies

V i (xk) ≤ J
∗
(xk). (61)

Proof: According to Theorem 3, for any i = 0, 1, . . . , we
have

V i (xk) ≥ V i+1(xk) ≥ V i+2(xk) ≥ · · · (62)

Thus, for any i = 0, 1, . . . , we can obtain

V i (xk) ≥ lim
l→∞ V l(xk) = J

∗
(xk). (63)

According to (62) and (63), we can easily derive (61). The
proof is complete.

Corollary 6: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (15)–(20). If for all xk ∈ �x ,
inequality (56) holds, then for i = 0, 1, . . . , the lower
iterative value function satisfies

V i (xk) ≥ J ∗(xk). (64)

If for all xk ∈ �x , inequality (58) holds, then for i = 0, 1, . . . ,
the lower iterative value function satisfies

V i (xk) ≤ J ∗(xk). (65)

Remark 1: According to Theorems 2–4, the convergence
and monotonicity properties of the iterative zero-sum ADP
algorithm are analyzed, which guarantee that the upper
and lower iterative value functions are convergent to their
optimums. If the saddle-point equilibrium of the zero-sum
game exists, then both the upper and lower iterative value
functions are expected to converge to the optimal solution
of the zero-sum game. Next, the optimality of the iterative
zero-sum ADP algorithm will be analyzed.

Theorem 5: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (9)–(14) and let V i (xk)
and [v i (xk), ωi (xk)] be obtained by (15)–(20). We can derive
the following.

1) If the saddle-point equilibrium of the zero-sum
game exists, then the upper and lower iterative value
functions will both converge to the saddle-point equilib-
rium.

2) If the upper and lower iterative value functions con-
verge to the same function, then the converged value
function is the saddle-point equilibrium of the zero-sum
game.
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Proof: First, if the saddle-point equilibrium of the
zero-sum game exists, then J

∗
(xk) = J ∗(xk) = J ∗(xk).

According to Theorem 2 and Corollary 2, we can
derive limi→∞ V i (xk) = J

∗
(xk) and limi→∞ V i (xk) =

J ∗(xk), ∀xk ∈ �x , respectively. We can easily derive
limi→∞ V i (xk) = limi→∞ V i (xk) = J ∗(xk), ∀xk ∈ �x .

On the other hand, if the upper and lower performance index
functions converge to the same function, that is

lim
i→∞ V i (xk) = lim

i→∞ V i (xk) = J o(xk). (66)

Then, we can get

J o(xk) = min
uk

max
wk

{U(xk, uk, wk) + J o(xk+1)}
= max

wk
min

uk
{U(xk, uk, wk) + J o(xk+1)} (67)

which means J o(xk) = J ∗(xk), ∀xk ∈ �x . The proof is
complete.

From Theorem 5, if the saddle point of the game exists,
i.e., V i (xk) = V i (xk) = J ∗(xk), then it is shown that the
upper and lower iterative value functions will both converge
to the optimum. According to Theorem 5, we can derive the
following corollary.

Corollary 7: For i = 0, 1, . . . , let V i (xk) and
[v i (xk), ωi (xk)] be obtained by (9)–(14) and let V i (xk)
and [v i (xk), ωi (xk)] be obtained by (15)–(20). We can derive
the following.

1) If the saddle-point equilibrium of the zero-sum
game does not exist, then the upper and lower
iterative value functions cannot converge to the same
function.

2) If the upper and lower iterative value functions converge
to different functions, then the saddle-point equilibrium
of the zero-sum game does not exist.

Remark 2: In this paper, according to Theorem 5, if the
saddle-point equilibrium of the zero-sum game exists, it is
proved that both the upper and lower iterative value functions
converge to the optimal solution of the zero-sum game, where
the existence criteria of the saddle-point equilibrium in the tra-
ditional zero-sum ADP algorithms [7], [18], [56]–[59] are not
required. We emphasize that this is an important contribution
of the developed algorithm. On the other hand, if the saddle-
point equilibrium does not exist, according to Corollary 7, we
can derive that the upper and lower iterative value function
must converge to different functions. Thus, the existence
justification of the saddle-point equilibrium for the zero-sum
games is not necessary for the developed iterative zero-sum
ADP. This is another advantage of the developed algorithm.

IV. SIMULATION EXAMPLE

We consider the performance of the developed algorithm
in a Van der Pol’s oscillator system [65] with modifications,
where a new control w is added to the system. The dynamics
of the modified Van der Pol’s oscillator system is given as
follows:

(
ẋ1
ẋ2

)
=

(
x2(

1 − x2
1

)
x2 − x1

)
+ Bu + Cw (68)

where B = [
3.5 0
0 3.5

]
and C = [

4 0
0 3

]
. Discretizing the system

with the sampling interval �T = 0.1 s leads to
(

x1(k+1)

x2(k+1)

)
=

(
x1k + �T x2k

−�T x1k + (1 + �T )x2k − �T x2
1kx2k

)

+ �T Buk + �T Cwk . (69)

Let the performance index function be expressed by (2).
The utility function is the quadratic form U1(xk, uk, wk) =
xT

k Q1xk + uT
k R1uk + wT

k S1wk , where Q1 = I1, R1 = I2,
S1 = −5I3, and I1, I2, and I3 denote the identity matrices
with suitable dimensions. For the upper and lower iterative
zero-sum ADP algorithms, we use three BP neural net-
works, including a critic network and two action networks,
to implement the upper and lower iterative ADP algorithms,
respectively. The structure of the critic network is 2–8–1. The
structures of the action networks are chosen as 2–8–2 and
2–8–2, respectively. The weight updating rules of the neural
networks can be seen in [66] and [67] and omitted here. For
each iteration, the critic network and the action networks are
trained for 3000 steps under the learning rate 0.01, so that the
neural network training errors become less than 10−6. For the
upper iterative zero-sum ADP algorithm, the critic network
and two action networks are used to approximate upper
iterative value function V i (xk) and upper iterative control law
pair [v i (xk), ωi (xk)], respectively. For lower iterative zero-sum
ADP algorithm, the critic network and two action networks are
used to approximate lower iterative value function V i (xk) and
lower iterative control law pair [v i (xk), ωi (xk)], respectively.
To illustrate the effectiveness of the algorithm, four different
initial value functions are considered. Let the upper initial
value function be the quadratic form, which are expressed
by �

j
(xk) = xT

k P j xk , j = 0, 1. Let P0 = [ 7.98 −1
−1 25.97

]
and

P1 = [
8.98 2

2 30

]
. Let the lower initial value function be the

quadratic form, which are expressed by � j (xk) = xT
k P j xk ,

j = 0, 1. Let P0 = [ 24.98 −0.5
−0.5 9

]
and P1 = 0. Implement the

iterative zero-sum ADP algorithm for 25 iterations to reach
the computation precision ε = 0.01. The convergence plots
of the upper and lower iterative value functions, i.e., V i (xk)

and V i (xk), which are initialized by �
0
(xk) and �0(xk),

respectively, are shown in Fig. 1(a) and (b), respectively.
The differences between the upper and lower iterative value
functions are shown in Fig. 1(c). We can see that differences
between the upper and lower iterative value functions converge
to zero. Initialized by �

1
(xk) and �1(xk), the convergence

plots of the upper and lower iterative value functions are shown
in Figs. 1(d) and 2(a), respectively. The differences between
the upper and lower iterative value functions are shown
in Fig. 2(b), which shows that the differences between the
upper and lower iterative value functions converge to zero.
Hence, the saddle-point equilibrium of the zero-sum game,
which is the optimal performance index function of the zero-
sum game, exists. The plot of the optimal performance index
function is shown in Fig. 2(c).

Initialized by �
1
(xk), we obtain V 1(xk) ≤ V 0(xk).

From Fig. 1(d), the upper iterative value function is monoton-
ically nonincreasing and converges to the optimum, which
verifies Theorems 2 and 3. Initialized by �1(xk), we obtain
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Fig. 1. Convergence plots of the iterative value functions. (a) V i (xk ) with

�
0
(xk ). (b) V i (xk ) with �0(xk ). (c) Plots of V i (xk ) − V i (xk). (d) V i (xk)

with �
1
(xk ).

Fig. 2. Convergence plots of the iterative value functions and states.
(a) V i (xk ) with �1(xk ). (b) Plots of V i (xk ) − V i (xk ). (c) Optimal perfor-

mance index function. (d) States by the upper iteration with �
0
(xk ).

V 1(xk) ≥ V 0(xk). From Fig. 2(a), the lower iterative value
function is monotonically nondecreasing and converges to the
optimum, which verifies Theorems 2 and 3. As �

1
(xk) ≥

�1(xk), from Lemma 2, V i (xk) ≥ V i (xk), ∀i = 0, 1, . . . ,
which can be verified from Fig. 2(b).

The state and control trajectories by the upper iteration
with �

0
(xk) are shown in Figs. 2(d) and 3(a) and (b),

respectively. The state and control trajectories by the lower
iteration with �1(xk) are shown in Figs. 3(c) and (d) and 4(a),
respectively, where the upper and lower iterative states and
controls converge to their optimums. The optimal state trajec-
tories are shown in Fig. 4(b). The optimal controls are shown
in Fig. 4(c) and (d), respectively.

On the other hand, if the saddle-point equilibrium does
not exist, then the traditional methods for solving the optimal

Fig. 3. Trajectories of states and controls. (a) Control u by the upper iteration
with �

0
(xk ). (b) Control w by the upper iteration with �

0
(xk ). (c) States

by the lower iteration with �1(xk ). (d) Control u by the lower iteration
with �1(xk ).

Fig. 4. Iterative and optimal trajectories. (a) Control w by the lower iteration
with �1(xk). (b) Optimal states. (c) Optimal control u. (d) Optimal control w.

control of the zero-sum game become invalid. In this situation,
the developed iterative zero-sum ADP algorithm can also find
the upper and lower optimal solution of the game. Now, we
change the utility function to U4(xk, uk, wk) = xT

k Q4xk +
uT

k R4uk + wT
k S4wk , where Q4 = 0.9I4, R4 = 0.8I5, and

S4 = −1.3I6. To illustrate the effectiveness of the algorithm,
we also choose four different initial value functions. Let
the upper initial value function be expressed by �

j
(xk) =

xT
k P j xk , j = 2, 3. Let P2 = [ 3 −0.2

−0.2 1

]
and P3 =[ 10.98 −1.75

−1.75 8.97

]
. Let the lower initial value function be the

quadratic form, which are expressed by � j (xk) = xT
k P j xk ,

j = 2, 3. Let P2 = [
0.3 0
0 6

]
and P3 = [

1 0
0 0.5

]
.

Implement the iterative zero-sum ADP algorithm for
25 iterations to reach the computation precision ε = 0.01. The
convergence plots of the upper and lower iterative value func-
tions, i.e., V i (xk) and V i (xk), which are initialized by �

2
(xk)

and �2(xk), respectively, are shown in Fig. 5(a) and (b),
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Fig. 5. Convergence plots of the iterative value functions. (a) V i (xk ) with

�
2
(xk ). (b) V i (xk ) with �2(xk ). (c) Plots of V i (xk ) − V i (xk). (d) V i (xk)

with �
3
(xk ).

Fig. 6. Convergence plots of the iterative value functions and states.
(a) V i (xk) with �3(xk). (b) Plots of V i (xk ) − V i (xk). (c) Upper and
lower optimal performance index functions. (d) States by upper iteration
with �

2
(xk).

respectively. The differences between the upper and lower
iterative value functions are shown in Fig. 5(c). We can see
that differences between the upper and lower iterative value
functions do not converge to zero. Initialized by �

3
(xk) and

�3(xk), the convergence plots of the upper and lower iterative
value functions are shown in Figs. 5(d) and 6(a), respectively.
The differences between the upper and lower iterative value
functions are shown in Fig. 6(b), which shows that the differ-
ences between the upper and lower iterative value functions
do not converge to zero. Hence, the saddle-point equilibrium
of the zero-sum game does not exist. The converged upper and
lower value function are shown in Fig. 6(c).

Initialized by �
2
(xk), we can get V 1(xk) ≥ V 0(xk).

According to Theorems 2 and 3, the upper iterative value
function is monotonically nondecreasing and converges to
the upper optimum, which can be verified by Fig. 5(a).

Fig. 7. Trajectories of states and controls. (a) Control u by the upper iteration
with �

2
(xk ). (b) Control w by the upper iteration with �

2
(xk ). (c) States

by the lower iteration with �
3
(xk ). (d) Control u by the lower iteration

with �
3
(xk ).

Fig. 8. Iterative and optimal trajectories. (a) Control w by the lower iteration
with �

3
(xk). (b) Upper and lower optimal states. (c) Upper and lower optimal

control u. (d) Upper and lower optimal control w.

Initialized by �
3
(xk) and �3(xk), we can get V 1(xk) ≤

V 0(xk) and V 1(xk) ≥ V 0(xk), respectively. According to
Theorems 2 and 3 and Corollary 5, the upper and lower
iterative value functions are monotonically nonincreasing and
monotonically nondecreasing, respectively, and converge to the
upper and lower optimums, respectively. These properties can
be verified by Figs. 5(d) and 6(a), respectively. The upper
and lower optimal performance index functions are shown
in Fig. 6(c), where the saddle-point equilibrium of the zero-
sum game does not exist.

The state and control trajectories by the upper iteration
with �

2
(xk) are shown in Figs. 6(d) and 7(a) and (b), respec-

tively. The state and control trajectories by the lower iteration
with �3(xk) are shown in Figs. 7(c) and (d) and 8(a), respec-
tively, where the upper and lower iterative states and controls
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converge to their optimums. However, the upper and lower
optimal control pairs are not the same. The upper and lower
optimal state trajectories are shown in Fig. 8(b). The upper
and lower optimal controls are shown in Fig. 8(c) and (d),
respectively. The differences of the state and control trajec-
tories between the upper and lower iterations can be noticed,
which also verify the nonexistence of saddle-point equilibrium
of the zero-sum game.

V. CONCLUSION

In this paper, a new iterative ADP algorithm is developed
for solving infinite-horizon optimal control problems for zero-
sum games of discrete-time nonlinear systems. The iterative
zero-sum ADP algorithm is separated into two iteration
procedures, i.e., upper and lower iterations, for solving upper
and lower optimal performance index functions, respectively.
If the saddle-point equilibrium of the zero-sum game exists,
it is proved that both the upper and lower iterative value
functions converge to the optimal solution of the zero-sum
game, where the existence criteria of the saddle-point
equilibrium are not required. With some constraints on the
initial upper and lower functions, the monotonicity of the
upper and lower iterative value functions by the iterative
zero-sum ADP algorithm can be guaranteed. If the upper and
lower iterative value functions do not converge to the same
function, it is proved that the saddle-point equilibrium does
not exist. Finally, a simulation example is given to illustrate
the performance of the present method.
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