
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Actor-Critic Learning Control Based on
�2-Regularized Temporal-Difference
Prediction With Gradient Correction
Luntong Li, Dazi Li , Tianheng Song, and Xin Xu , Senior Member, IEEE

Abstract— Actor-critic based on the policy gradient (PG-based
AC) methods have been widely studied to solve learning control
problems. In order to increase the data efficiency of learning
prediction in the critic of PG-based AC, studies on how to use
recursive least-squares temporal difference (RLS-TD) algorithms
for policy evaluation have been conducted in recent years. In such
contexts, the critic RLS-TD evaluates an unknown mixed policy
generated by a series of different actors, but not one fixed policy
generated by the current actor. Therefore, this AC framework
with RLS-TD critic cannot be proved to converge to the optimal
fixed point of learning problem. To address the above problem,
this paper proposes a new AC framework named critic-iteration
PG (CIPG), which learns the state-value function of current
policy in an on-policy way and performs gradient ascent in
the direction of improving discounted total reward. During each
iteration, CIPG keeps the policy parameters fixed and evaluates
the resulting fixed policy by �2-regularized RLS-TD critic. Our
convergence analysis extends previous convergence analysis of PG
with function approximation to the case of RLS-TD critic. The
simulation results demonstrate that the �2-regularization term in
the critic of CIPG is undamped during the learning process, and
CIPG has better learning efficiency and faster convergence rate
than conventional AC learning control methods.

Index Terms—�2-regularization, actor-critic (AC), policy
gradient (PG), reinforcement learning (RL), value function
approximation.

I. INTRODUCTION

LEARNING control is one of the basic reinforcement
learning (RL) tasks. The process of learning control is

to obtain an optimal policy during the interactions with the
environment to maximize some numerical values associated
with a long-term objective for a system that is usually for-
mulated as a Markov decision process (MDP) [1]. In learning
control problems with continuous state and action space, actor-
critic (AC) methods, including conventional policy-gradient

Manuscript received May 3, 2017; revised October 24, 2017 and January 25,
2018; accepted February 10, 2018. This work was supported in part by
the National Natural Science Foundation of China under Grant 61573052,
Grant 61751311, and Grant U1564214, in part by the Beijing Natural
Science Foundation under Grant 4182045, and in part by the Fundamental
Research Funds for the Central Universities of China under Grant ZY1839.
(Corresponding author: Dazi Li.)

L. Li, D. Li, and T. Song are with the Department of Automation, Beijing
University of Chemical Technology, Beijing 100029, China (e-mail: lidz@
mail.buct.edu.cn).

X. Xu is with the Institute of Unmanned Systems, College of Mechatronics
and Automation, National University of Defense Technology, Changsha
410073, China (e-mail: xuxin_mail@263.net).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2808203

(PG)-based algorithms [2]–[6] and approximate dynamic
programming [7]–[14], have been widely studied. The basic
idea in AC learning control is to evaluate the value function
by temporal difference learning (TD learning) and update
the policy parameters in the direction of the PG. In the
actor, the PG can help to generate continuous actions in the
space of policy parameters. In the critic, TD learning can
help to reduce the variance of the estimation of expected
returns and thus accelerate the learning [15]. These advantages
promote AC methods into a class of high-efficiency RL
methods. These methods have been applied to various fields
such as robotics [16]–[19], power control [20]–[22], traffic
control [23], [24], and finance [25].

In AC, all kinds of policy evaluation methods, including
first-order TD learning [15], [26], residual gradient TD learn-
ing [27], TD learning with gradient correction [28], and least-
squares TD (LSTD) [29]–[33], can be used in the critic.
Some researchers have extended the above policy evaluation
algorithms with �2-regularization to prevent solutions from
overfitting. The basic idea of �2-regularization is to solve
the �2 penalized least-squares problem, also known as ridge
regression [35]–[37]. The �2-regularization problem has a sim-
ple closed-form solution. However, when �2-regularization is
adopted in RLS-TD learning, the regularization term decreases
during the learning process [38]. Thus, the parameters of value
function approximation keep increasing, although the objective
function could converge.

In a policy evaluation task, RLS-TD learning has a higher
data efficiency and faster convergence rate than first-order
TD learning. Thus, RLS-TD learning has been successfully
applied in the critic learning of AC methods [4], [39]–[41].
Since the policy is changing with the actor, the resulting policy
is termed time-varying policy, and the RLS-TD algorithms in
the AC framework do not work in the same way as on-policy
learning. Thus, it is hard to deal with convergence analysis
for these algorithms. Bhatnagar et al. [15] also point out that
it remains unclear how to incorporate LSTD methods into a
context in which the policy keeps changing.

To solve the above problems in the AC methods, this paper
proposes an AC framework named critic-iteration PG (CIPG)
based on the RLS-TD critic. Two versions of RLS-TD
algorithms, the �2-regularized recursive LSTD with gradient
correction (termed RRC) and a fast �2-regularized recursive
LSTD with gradient correction (termed FRRC) form [38], are
used as CIPG’s critic to make the effect of �2-regularization
sustainable during the learning process. Convergence analysis

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1610-6558
https://orcid.org/0000-0003-3238-745X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of the CIPG is also provided. In empirical experiments,
the proposed algorithm is applied to solve three benchmarks in
RL, namely, the 20-state Markov chain walk, the inverted pen-
dulum, and the mountain car. The simulation results show that
the critic in CIPG can sustain the effect of �2-regularization
during the whole learning process. Furthermore, CIPG has
a better learning efficiency and faster convergence rate than
conventional AC learning control framework.

The rest of this paper is organized as follows. In Section II,
the background of MDP and stochastic PG theory are pre-
sented. We present our CIPG algorithm in Section III and
introduce RRC and FRRC as critics in our AC algorithm.
In Section IV, the corresponding convergence analysis is given.
The simulation results are shown in Section V. The conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION

A. Background of the Markov Decision Process

The task of learning control is to find an optimal policy
through interactions with the stochastic environment. In order
to simplify the formulation, we model the problem as a
discrete-time MDP that is defined as a tuple (S, A, P0, R, γ),
where S is the state space, A is the action space, P0 is the
state transition mapping: P0(st+1|st , at .) : S× A× S → [0, 1],
which specifies the conditional density of moving from state
st to st+1 when the action at is given; R : S→ R is a reward
function that gives the immediate reward rt at each time step;
and γ ∈ [0, 1] is a discount factor that has been discussed how
to choose in [42]. A stochastic policy πu : S → P(A) maps
state space to a set of probability measures over A, where
u ∈ R

n is the parameter vector and πu(at |st) denotes the
conditional probability density of at in state st . The state-
value function V π(s) related to a given policy π is defined as
the expected discounted sum of rewards obtained during the
interaction starting from s0. Our aim is to find a policy π that
maximizes the total discounted reward starting from state s0

J (π) = E

[∞∑
t=1

γ t−1rt |π, s0

]

=
∑
S

dπ(s)
∑
A
πu(at |st)Q

πu (s, a), (1)

where dπ(s) = ∑∞
t=0 γ

t P(st = s|s0, π) denotes the dis-
counted state distribution starting from s0 and then following
policy π. We assume that the PG ∂πu(at |st)/∂u always exists,
as does the given policy πu(at |st). The state-value function
V π(s) and the action-value function Qπ (s, a) are defined as

V π(s) = E

[∞∑
t=1

γ t−1rt |s0 = s, π

]
(2)

and

Qπ (s, a) = E

[∞∑
t=1

γ t−1rt |s0 = s, a0 = a, π

]
(3)

respectively.
Given some basis functions φ(s) ∈ R

n , a linear function
approximation (LFA) can be used to approximate the state-
value function: V π(s) ≈ θTφ(s), where θ ∈ R

n is a linear
parameter vector.

B. Stochastic Policy Gradient for Start-State Formation

In this section, the stochastic PG is derived for learning
control problems with discounted total rewards (also known
as start-state formulation) based on the average-reward for-
mulation in the previous works [2], [4], [6], [15].

The gradient of the start-state formulation for parameterized
policies is as follows [2]:

∇u J (πu(a|s)) =
∑
S

dπ(s)
∑
A
∇uπu(a|s)Qπ(s, a). (4)

For any baseline function b(s), which can be arbitrary function
of state s, the gradient of the discount total rewards in (4) can
be rewritten as

∇u J (πu(a|s)) =
∑
S

dπ (s)

×
∑
A
∇uπu(a|s)(Qπ(s, a)− b(s)). (5)

The role of the baseline in (5) is to reduce the variance
of the gradient estimate ∇u J (πu(a|s)), so as to accelerate the
rate of convergence of the PG algorithm [1]. If θ1 ∈ R

n and
φ(s, a) ∈ R

n are, respectively, the linear parameter vector
and the basis function, then the action-value function in (5) is
usually replaced by the approximation Q̃π (s, a) = θT

1 φ(s, a),
on the condition that 1) Q̃π (s, a) is compatible with the policy
parameterization, i.e., ∇θ1 Q̃π (s, a) = ∇u logπu(a|s), and 2)
when the parameter update of θ1 converges, Q̃π (s, a) satisfies∑
S

dπ(s)
∑
A
πu(a|s)(Qπ(s, a)− Q̃π(s, a))∇θ1 Q̃π (s, a) = 0.

(6)

According to [23, Lemma 2], b(s) = V π (s) is the optimal
baseline that minimizes the variance in the action-value func-
tion estimator. By substituting b(s) = V π (s) into (5), we have

∇u J (πu(a|s)) =
∑
S

dπ(s)
∑
A
∇uπu(a|s)Aπ(s, a). (7)

where Aπ(s, a) ≡ Qπ (s, a)−V π(s) is the advantage function.
Bhatnagar et al. [15] derived four different AC algorithms

to update the policy parameters in the direction of the average
reward gradient. We extend some of their results to the start-
state formulation, and we have Lemmas 1 and 2, which are
the analogs in [15, Lemmas 3 and 4].

Lemma 1: Under a given policy π , the TD error δt = rt+1+
γ V̂ (st+1) − V̂ (st) is an unbiased estimate of the advantage
function Aπ(s, a) under the start-state formulation

E[δt |st , at , π] = Aπ(st , at). (8)

Lemma 2: If TD recursion converges with probability 1, and
δπt = r t→∞

t+1 + γ θπTφ(st+1) − θπTφ(st) denotes a stationary
estimate of the TD error, then the bias in the estimate of the
gradient of the discount reward can be formulated as

E
[
δπt ψ(st , at)|u

] = ∇u J (πu(a|s))+
∑
S

dπ(s)∇u V π(s). (9)

where V π (s) denotes the following quantity:∑
a π(a|s)[R(s, a) + γ

∑
st+1

P0(st+1|st , at)θ
πTφ(st+1)] −

J (πu).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ACTOR-CRITIC LEARNING CONTROL BASED ON �2-REGULARIZED TD PREDICTION 3

III. ACTOR-CRITIC LEARNING CONTROL

ALGORITHM BASED ON RLS-TD LEARNING

In the conventional AC framework, first-order algorithms,
commonly TD and its variants, are used as the adaptive
policy evaluation methods for the critic. In the AC framework,
the policy is time-variant because of the policy improvement
update of the actor. TD-like algorithms, as the stochastic
gradient descent methods can gradually ignore the old samples
generated under the previous policy and put more emphasis on
the new samples under the current policy. Therefore, TD-like
algorithms can evaluate the value function of the current policy
without bias, in spite of having a low convergence rate. In the
task of policy evaluation, RLS-TD algorithms have much
higher sample efficiency than TD-like algorithms. However,
when RLS-TD algorithms take the place of TD like algorithms
and are used as the critic, this unbiased evaluation cannot be
achieved. The reason lies in the fact that RLS-TD algorithms
are batch algorithms but not adaptive algorithms, e.g., each
single sample is equally effective to the critic update. Due to
the time-variant policy mentioned earlier in AC, the samples
in the trajectory are generated by different policies at each
time step. Thus, the value function evaluated by RLS-TD
algorithms cannot be an accurate evaluation either for the
previous or the current policy. Essentially, RLS-TD does not
work in the way of on-policy learning. To retain the high
sample efficiency of RLS-TD and to make it work in the
way of on-policy learning, a new AC framework is presented
based on a sustainable �2-regularized RLS-based critic in the
direction of the discounted reward gradient.

A. AC Framework Based on RLS-TD Learning

We use V̂ π(s) = θTφ(s) to denote the approximation of
the state-value function in state s and assume that the basis
functions {φ(s), s ∈ S} are linearly independent. Since the
critic uses an LSTD learning method, which can exclude the
step-size schedule, the step-size schedule is considered only
for the actor. Let {βt } be the step-size sequence that satisfies∑

t

βt =∞,
∑

t

β2
t <∞. (10)

Another crucial assumption is that the parameter of the
actor should change more slowly than that of the critic. Thus,
the step size sequence {βt } should be set as a sufficiently small
positive value. Hence, the critic converges faster than the actor.

In Algorithm 1, the behavior policy ub
m is used to generate

samples at mth iteration. Since �2-regularized recursive LSTD
with gradient correction (RRC) is a batch learning algorithm,
the behavior policy ub

m remains unchanged until the end of
each mth iteration. All RRC parameters are reset to zero
at the beginning of each iteration. In this way, RRC works
in the way of on-policy learning at each iteration, because
the policy in each iteration is invariant and thus the samples
are generated by this identical policy. Therefore, RRC can
evaluate this current policy without bias. This AC framework
is a policy iteration-like method using PG as the actor.
Furthermore, on-policy learning can improve the convergence
performance of RRC and other RLS-TD algorithms in the AC

Algorithm 1 CIPG Based on RRC
Initialization:

Parameters:
πu(a|s) : parameterized policy with initial parameters

u = u0;
ub

0 = u0 : behavior policy;
φ(s) : value function basis function;
ε̄ ∈ R

+ : regularization parameter;
γ ∈ [0, 1] : discount factor.

1:Repeat
2: Reset critic parameters: ζ0 = 0, h0 = 0.
3: Set P0 = 1/ε̄ I and G0 = ε̄ I ;
4: Repeat
6: Initial state s0 and step size β;
7: Draw action at ∼ πub

m
(at |st), observe next state

st+1 ∼ P(st , at , st+1) and reward rt+1.
8: Critic update: according to RRC or FRRC.
9: Compute TD error: δt+1 = rt+1 − γ θT

t+1φ(st+1)

−θT
t φ(st).

10: Actor update: ut+1 = ut + βtδtψst at .
11: Until reach desired steps.
11: Behavior policy update: ub

m = ut+1.
12:Until reach desired iteration.
Return πu(a|s).

framework. This is the main difference between the proposed
AC framework and the previous ones. Peters and Schaal [4]
proposed a series of natural gradient-based AC algorithms.
One of their algorithms used an least-squares TD Q-learning
(LSTDQ) method in a critic update. However, in this paper,
they did not treat LSTDQ as a batch leaning algorithm in
their settings. In this case, since the policy is changing, the
LSTDQ evaluates the expectation of the sum of the policy
at all time steps, but not the policy at the current time step.
Therefore, convergence analysis is hard to achieve for their
LSTDQ-based AC algorithm. Although a forgetting factor is
used in their LSTDQ settings, to forget part of its accumulated
sufficient statistics, we found that the forgetting rate will
change the stationary distribution of state s under the policy
π . This causes an extra approximate error in policy evaluation.
Hence, it is more reasonable to use least squares methods as
batch leaning algorithms in critic update of the AC algorithm.
In Algorithm 1, we use RRC and fast RRC (FRRC) [38],
two versions of LSTD learning with gradient correction [32],
as our critic.

B. Sustainable �2-Regularized RLS-TD With
Gradient Correction

The state matrix in an RLS-TD algorithm is often initialized
as a diagonal matrix with a small positive coefficient to
make the state matrix invertible. In the perspective of regu-
larization, this initial coefficient can realize �2-regularization
(also mentioned as ridge regression). Thus, the objective
function is combined by a mean-square-projected Bellman
error (MSPBE) and a �2-regularization term. As this initial
coefficient is constant, the weight of the �2-regularization term

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

is also constant. However, the number of samples increases in
the process of learning, and the percentage of MSPBE as error
loss also gradually increases. Accordingly, the percentage of
�2-regularization term is squashed. This compression means
that the effect of �2-regularization decreases during learning
and the �2-norm of the parameters increases. This weaken
regularization is not good for convergence. To solve this
problem, RRC [38] adds a regularization step at each time
step to make the effect of �2-regularization sustainable but
not weaken during learning. Then, RRC’s objective is to find
the solution of the following objective function:

f (θ∗∗) = arg min
μ

1

2
‖̃μ− (R̃ + γ ̃′)θ‖2 + ε̄‖μ‖22, (11)

where the sample matrices ̃, ̃′, and R̃ are defined as

̃ ≡
⎡
⎢⎣
φ(s1)

T

...

φ(sm)
T

⎤
⎥⎦, ̃′ ≡

⎡
⎢⎢⎣
φ
(
s′1
)T
...

φ
(
s′m
)T

⎤
⎥⎥⎦, and R̃ ≡

⎡
⎢⎣

r1
...

rm

⎤
⎥⎦,
(12)

respectively, and ε̄ ∈ R is a �2-regularization parameter. Other
�2-regularized LSTD algorithms find the solution of

f (θ∗) = arg min
μ

1

2
‖̃μ− (R̃ + γ ̃′)θ‖2 + lim

k→m

1

k
ε̄‖μ‖22.

(13)

Both the right-hand sides of (11) and (13) consist of an
MSPBE and a �2-regularization term. Using an auxiliary
LFA with parameters ω ∈ R

n to approximate the TD error,
the linear system solved by RRC is[
̃T ̃− γ ̃T ̃′ γ ̃′T ̃
̃T ̃− γ ̃T ̃′ ̃T ̃

]
ζ +

k∑
i=1

ε̄ Iζ =
[
̃T R̃
̃T R̃

]
, (14)

where ζ = [θ;ω].
The state matrix in (14) can be rewritten in the following

incremental form:

G̃k ≡
k∑

i=1

([
φi
(
φi − γφ′i

)T
γφ′iφT

i

φi
(
φi − γφ′i

)T
φiφ

T
i

]
+ ε̄ I

)
, h̃k

≡
k∑

i=1

[
riφi

riφi

]
. (15)

If we denote Pk as the inverse of state matrix G̃k , then the
incremental form of Pk is

Pk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pk−1 +
[
φk

φk

]
︸ ︷︷ ︸

u1,k

[(
φk − γφ′k

)T 0
]

︸ ︷︷ ︸
vT

1,k

+
[
γφ′
φk

]
︸ ︷︷ ︸

u1,k

[
0 φT

k

]
︸ ︷︷ ︸

vT
1,k

+ ε̄I(1)IT
(1) + ε̄I(2)IT

(2) + · · · + ε̄I(2n)IT
(2n)︸ ︷︷ ︸

ε̄I

⎫⎪⎬
⎪⎭
−1

,

(16)

where I(i) is an element vector whose elements are zeros,
except for the i th one, which is 1, Pk can be solved using the

Sherman–Morrison formula 2(n+1)+2n times. The recursive
steps for the vector product terms u1,kv

T
1,k + u2,kv

T
2,k in (16)

are shown as follows:⎧⎪⎨
⎪⎩
�1,k = Pk−1u1,k

K1,k = �1,k
(
vT

1,k Pk−1
)
/
(
1+ vT

1,k�1,k
)

Dk = Pk−1 − K1,k

(17)

⎧⎪⎨
⎪⎩
�2,k = Dku2,k

K2,k = �2,k
(
vT

2,k Dk
)
/
(
1+ vT

2,k�2,k
)

Pk = Dk − K2,k .

(18)

By defining Pk,(j) as the inverse of G̃k with the first j terms
of ε̄ I , the recursive steps for the last 2n terms in G̃k can be
updated by

Pk,(j) = Pk,(j−1) − Pk,(j−1)ε̄I(j)

×(1+ IT
(j)Pk,(j−1)ε̄I(j)

)−1IT
(j)Pk,(j−1)

= Pk,(j−1) − ε̄Pk,(j−1)(·, j)

×(1+ ε̄Pk,(j−1)(j, j))−1Pk,(j−1)(j, ·). (19)

Then, RRC updates the parameters by ζk = Pk,(2n)h̃k .
Text I shows the pseudocode of RRC.

Text 1 RRC
Initialization:

Parameters and samples:
Regularization parameter ε̄ ∈ R+,
Discounted factor γ ∈ [0, 1],
Value function basis function φ(s),
State transition and reward samples from time-step 1 to
m{si , ri , s′i }mi=1.

Variables:
ζk = 0, h̃0 = 0, G̃0 = ε̄ I .

1: Repeat
2: Compute u1,k , u2,k , vT

1,k , and vT
2,k as in (14),

3: Compute Pk as in (15) and (16),
4: Repeat
5: Compute Pk,(j) as in (17),
6: j ← j + 1.
7: Until j = 2n.
8: Compute ζk = Pk,(2n)h̃k ,
9: k ← k + 1,
10: Until k = m.
Return ζm .

The computational complexity of RRC is O(n3). We can
reduce it to O(n2) by assuming that the number of samples
is much larger than the dimension of basis function. When a
new sample comes, only one element ε̄I(p)IT

(p) of ε̄ I in (19)
is added, and then Pk can be recursively updated by

Pk = Pk−1 − ε̄Pk−1(·, p)(1+ ε̄Pk−1(p, p))−1 Pk−1(p, ·).
(20)

This variant of RC is termed fast sustainable �2-regularized
RC (FRRC), and the pseudocode of FRRC is the same as RRC
expect that we use the following steps to replace steps 1–10 in
Text 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ACTOR-CRITIC LEARNING CONTROL BASED ON �2-REGULARIZED TD PREDICTION 5

Text 2
1: Repeat
2: Compute u1,k , u2,k , vT

1,k , and vT
2,k as in (16),

3: Compute Pk as in (20),
4: p← p + 1,
5: If (p > 2n),p← 1.
6: Compute ζk = Pkh̃k ,
7: k ← k + 1,
8: Until k = m.

IV. CONVERGENCE ANALYSIS

We now present the convergence analysis of the proposed
AC framework. We prove that CIPG converges to a local
optimal policy under some conditions and assumptions.

Since our algorithm’s actor update is the same as [2]
and [23], with the exception that our algorithm is under the
start-state formulation, the convergence analysis of our actor
update should be similar to that of [2] and [15]. Furthermore,
in the critic update, the least squares method is used to find
the TD fixed point of value function parameters in place
of the first-order algorithms in [15]. As mentioned earlier,
our critic update works in the way of on-policy learning
during each iteration. Hence, the convergence analysis of the
proposed algorithm can be divided into two steps: the critic’s
convergence analysis and the actor’s convergence analysis.

We recall the convergence analysis result of the critic
from [38]. The corresponding assumptions are summarized as
follows.

Assumption 1: The underlying policy is stationary; the MDP
is finite, ergodic, and stationary; and the expectation of the
reward function is bounded.

Assumption 2: The basis function matrix is full rank, and
is bounded for each state.

Assumption 3: All of the recursive inversing equations
satisfy 1+ vT A−1u = 0 in the denominators.

Under these assumptions, RRC and FRRC algorithms con-
verge to the unique TD fixed point θ∗∗ of (11) with a
probability of one [38]. That is

lim
k→∞ ζk = lim

k→∞
[
θk ωk

]T ≈ [θ∗∗ 0
]T
. (21)

Note that the fixed point in (11) is different from other
�2-regularized least-squares-based algorithms, such as RC and
LSTD.

Fig. 1 shows the different learning processes of (11)
and (13). In RC and LSTD, with the increasing number of
samples, the radii of the �2-norm ball of μ will also increase
and the TD fixed point is thus changing. This accounts for
why the effect of �2-regularization of RC and LSTD decreases.
However, the radii of the �2-norn ball of RRC and FRRC are
constant; therefore, they can sustain the �2-regularization effect
in the learning process.

Now, we present the convergence analysis of the actor,
which is similar to that in [2]. From Conditions 1–3, we can
obtain the convergence theorem as follows.

Condition 1: δ̂πt is an unbiased estimate
of δπt :E[δ̂πt |u] = δπt , in which δ̂πt = rt+1 + γ θπTφ(st+1)−

Fig. 1. Trajectory of a fixed point throughout the learning process.

θπTφ(st) denotes the estimation of TD error at time
step t .

Condition 2: where ∇̂u J(πu) = δtψ(s, a) is an unbiased
estimate of ∇u J (πu).

Condition 3: where ∂2πu(a|s)/∂ui∂u j and
∂2 J (πu)/∂ui∂u j are bounded.

Theorem 1 (Convergence of Critic-Iteration Policy Gradi-
ent With Function Approximation): Let πu(a|s) and V̂ π (s)
be any differentiable function approximation for the policy
and value function, respectively. Let {βt } and δ̂t = rt+1 +
γ θTφ(st+1)− θTφ(st) be the step-size schedule that satisfies
the condition (10) and the estimation of TD error at time step t ,
respectively. Then, for an MDP with bounded rewards {rt },
following the parameter iterations in Algorithm 1, we have
lim

t→∞∇u J (πu) = 0 with a probability of 1, where ∇u J (πu) =
E[δπt ψ(st , at)|u] = E[δ̂πt ψ(st , at)|u].

Proof: Let θ∗∗ be the optimum weight parameter that
minimizes the MSPBE MSPBE(θ) = ‖Vθ −�T Vθ‖2D,
where � is a projection operation, T is the Bellman operator,
and D ∈ R

|S|×|S| is a state-distribution diagonal matrix [2].
The error in the estimation of δπt = rt+1 + γ θ∗∗Tφ(st+1) −
θ∗∗Tφ(st) caused by our AC framework is eπt = δ̂πm−1

t −δπm
t ,

where πm and πm−1 are the policy in the mth and (m − 1)th
iteration. The resulting PG is ∇̂u J(πu) = (δπm

t −eπt)ψ(st , at).
Since βt → 0, we have for all m greater than some
index m̄, the distance ‖πm−1 − πm‖2 is small enough, then the
RLS-TD critic (RRC or FRRC) in our AC framework evaluates
the value function of πm . As mentioned earlier, RRC and
FRRC algorithms converge to the unique TD fixed point θ∗∗
under the policy πm . Thus, we have E[δπm

t |um] = δ̂πm−1
t and

eπt → 0. Then, we can obtain ∇̂u J (πu) = δπm
t ψ(st , at). From

Lemma 1, and following the definition of the gradient of the
parameterized policy in formula (4), we have ∇̂u J (πu) =
δtψ(s, a)'C which is a unbiased estimate of ∇u J (πu), and
causes the actor to be updated along with the direction of
the PG. Hence, Conditions 1 and 2 are verified.

For Condition 3: a simple calculation shows that

∂2πu(a|s)/∂ui∂u j = πu(a|s)[ψ ′(s, a)ψ(s, a)

−
∑

a′∈A
πu(a

′|s)ψ ′(s, a)φ(s, a′)].

(22)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Thus, ∂2πu(a|s)/∂ui∂u j exists and is bounded. As we
assume that rewards {rt } are bounded, we can directly con-
clude that ∂2 J (πu)/∂ui∂u j is also bounded. Thus, ∇u J (πu)
is a Lipschitz continuous function.

With the above-mentioned conditions and the step size
defined in (10), [43, Proposition 3.5] holds, and the actor then
converges to a local optimum. The claim follows.

Next, we turn to discuss how the error in using function
approximation affects the convergence and performance of
the proposed method. In order to make discussion more
clearly, we replace J (πu) with the notation J (u) with-
out changing the meaning. Furthermore, we consider the
MDPs with cost defined as a negative reward −rt at time
step t , and the corresponding objective is to minimize the
long-term-discounted total negative rewards. This minimiza-
tion problem is equivalent to the maximization problem as
we considered in the original policy accent settings. Thus,
a change occurs only in our actor update

ut+1 = ut − βtδtψst at . (23)

The first-order Taylor expansion of J (ut+1) shows that

J (ut+1) = J (ut)+ βt∇u J (ut)
′dt + o(βt) (24)

where dt denotes the decent direction. In lieu of Lemma 2,
the decent direction in our method becomes

dt = −(∇u J (ut)+ eπut), (25)

where eπut = ∑
S dπut (s)[∇u V πut (s) − γ∇uθ

πut Tφ(s)].
To ensure that the directions dt will not become asymptot-
ically orthogonal to the gradient direction ∇u J (ut) near the
nonstationary point, we enforce the following condition [43]
on dt for all t :

∇u J (ut)
′(∇u J (ut)+ eπut) ≥ c1‖∇u J (ut)‖2,
‖∇u J (ut)+ eπut ‖ ≤ c2‖∇u J (ut)‖, (26)

where c1 and c2 are some positive scalars. In view of the
Taylor expansion (24), the above condition implies that

J (ut+1)− J (ut) = βt∇u J (ut)
′dt

≤ −βt c1‖∇u J (ut)‖2
≤ 0, (27)

which means J (ut) is monotonically nonincreasing. Thus,
if the error in using function approximation satisfies condi-
tion (27), then the policy is monotonically improved by our
actor update.

V. SIMULATION AND EXPERIMENTS

This section compares the performances of the pro-
posed two AC algorithms CIPG-RRC and CIPG-FRRC with
two other algorithms: 1) RLSTD-PG [4] (RLSTD in the
AC framework that uses RLSTD as TD-like critic) and
2) c-PG [15] (conventional PG-based AC algorithm). Three
learning control benchmarks are considered: a discrete
20-state chain walk problem is chosen to test the
�2-regularization effect for the parameters in the critic and the
mountain car (a goal-reaching task) and inverted pendulum

(an avoidance control task) problems are chosen to test
the convergence performances. All the simulation results are
averaged over 20 runs. Because all of these experiments
are learning control problems with finite action space, Gibbs
distribution is used to represent the policy. We believe that our
algorithms can also be extended to continuous action space
cases using normal distribution [44].

A. 20-State Chain Walk Problem

A simple discrete 20-state chain walk problem [31] is first
considered to show that CIPG converges to the optimal policy.
This MDP consists of 20 states (numbered from 1 to 20),
2 actions (“left” and “right”), and 1 reward at each boundary
of the chain (states 1 and 20). Each action has a successful
possibility of 0.9 to be executed, and a fail possibility of
0.1, which leads to the execution of the opposite action. The
discount factor for this MDP is set to 0.9. The optimal policy
is to go left in states from 1 to 10 and to go right in states
from 11 to 20.

LFA is constructed to represent state-value functions, and a
parameterized Gibbs distribution is used to represent policy.
The state feature vector φs ∈ R

d for the first experiment
contains 11 radial basis function (RBF) basis functions plus a
constant term

φs =
[

1, exp

(
‖s − k‖22
−2σ 2

)]T

, k = 1, 3, 5, . . . , 21, σ = 7.

(28)

The state-action feature vector φsa ∈ R
d×m is constructed

using φs

φsai = [0, . . . , 0,︸ ︷︷ ︸
d×(i−1)

φs, 0, . . . , 0,︸ ︷︷ ︸
d×(m−i)

]T . (29)

The initial policy parameters u0 and critic parameters ζ0
are set at 0. Since the critic excludes step-size schedules in
both RRC and FRRC, we only design step-size sequences for
the actor, according to the condition in (10)

βt = β0
βc

βc + t2/3 (30)

where β0 = 0.1 and βc = 100.
Training data in our experiments consist of independent,

identically distributed (i.i.d.) samples [45]. In the i.i.d. for-
mulation, the states st are i.i.d. generated independently and
identically distributed, according to uniform distribution. From
each st , the next state st+1 is generated according to current
policy, and a corresponding reward rt is generated according to
reward function. The final i.i.d. data sequence is (sk , rk , sk+1),
for k = 1, 2, . . . ,m, where m is the length of the sequence.
The lengths of the data sequences in three experiments are
1000, 3000, and 1000, respectively. Computational times of
the 20-state chain work problem, the inverted pendulum, and
the mountain car problem are listed in Table I.

Fig. 2 shows different convergence trends of parameters
of two kinds of �2-regularization schemes: conventional �2-
regularization scheme (corresponding to RLSTD and RC
shown in Fig. 2) and sustainable �2-regularization scheme

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ACTOR-CRITIC LEARNING CONTROL BASED ON �2-REGULARIZED TD PREDICTION 7

TABLE I

COMPUTATIONAL TIMES OF DIFFERENT ALGORITHMS

Fig. 2. �2-norm of RLSTD’s, RC’s, RRC’s, and FRRC’s parameters, averaged
over 20 runs.

Fig. 3. MSEs of RLSTD-PG, CIPG-RRC, CIPG-FRRC, and c-PG. The
results are averaged over 20 runs.

(corresponding to RRC and FRRC shown in Fig. 2). The �2
regularization parameters of RLSTD, RC, RRC, and FRRC
were initialized as 0.2, 0.2, 0.0001, and 0.0001, respectively.
In Fig. 2, the �2-norms of RLSTD’s and RC’s parameters
increase with the increasing number of samples, whereas those
of the RRCs and FRRCs keep almost invariant. Particularly,
at the time step of 2000, the curves of �2-norms of RC, RRC,
and FRRC are intersected, because at this time step these
three algorithms have the equivalent regularization weight in
objective function.

In the experiments of Figs. 3 and 4, we initialize the
�2-regularization parameters of RLSTD, RRC, and FRRC,
as ε = 1, ε̄ = 0.0001, and ε̄ = 0.0001, respectively. The
mean-squared error (MSE) ‖V̂ π − V π∗‖2 is used to measure

the performances of these algorithms and c-PG, where V̂ π and
V π∗ are the evaluated value function of current policy and
true value function of optimal policy, respectively. In order to
compare the convergence of the three algorithms (RLSTD-PG,
CIPG-RRC, and CIPG-FRRC) with c-PG, we tested the policy
improvement of these algorithms after the equivalent samples.

Fig. 3 shows the MSEs of c-PG, RLSTD-PG, CIPG-RRC,
and CIPG-FRRC on a chain walk problem. All algorithms dis-
played fast converge. The least-squares-based AC algorithms
had smaller MSEs than c-PG. The MSEs of all algorithms
decreased with the increasing number of iterations. After four
iterations (4000 samples), the MSE of least-squares-based AC
algorithms was about 0.2. After 20 iterations (20 000 samples),
c-PG’s MSE was about 0.7.

Fig. 4 shows the improved policies of CIPG-RRC, RLSTD-
PG, and c-PG after two iterations (1000 samples for each
iteration). The figure shows the probability of taking the left
action according to the improved policy. The optimal policy in
this problem is to go left at states from 1 to 10 and to go right
otherwise with a probability of 1. CIPG-RRC performs best
among these algorithms. After six iterations (6000 samples),
CIPG-RRC converges to a near optimal policy, which repre-
sents better performance than the policies learned by RLSTD-
PG and c-PG.

B. Inverted Pendulum

In the second experiment, the inverted pendulum problem
noted in [31] is considered. As shown in Fig. 5, the task is
to balance a pendulum with unknown length and mass by
applying one of three candidate actions a at each time step:
[−50N, 0N, +50N]. All the actions are noisy by adding a
uniform noise in [−10N, +10N]. The continuous state space
includes the vertical angle ξ and the angular velocity ξ̇ of
the pendulum. The dynamics of the system is given by the
following nonlinear differential equation:

ξ̈ = g sin(ξ)− α(ml(ξ̇)2 sin(2ξ)/2+ cos(ξ)a)

4l/3− αml cos2(ξ)
(31)

where g = 9.84 m/s2, m = 2.0 kg, M = 8.0 kg, l = 0.5 m,
α = 1/(M + m) stand for the gravity constant, the mass
of the pendulum, the mass of the car, the length of the
pendulum, and a constant, respectively. The reward is 0 when
ξ ∈ [−π/2, π/2] and is −1 otherwise. The simulation time
step and the discount factor are set at 0.1 s and 0.96,
respectively.

We used identical LFA as in the first experiment for the
state feature vectors and state-action feature vectors except
that state feature vectors φs have nine RBF basis functions
plus a constant term

φs =
[

1, exp

(
‖s − ki‖22
−2σ 2

)]T

(32)

where s = (ξ, ξ̇), the centers ki are nine points of the grid
{−0.5, 0, 0.5}×{−0.5, 0, 0.5}, and σ = 0.5 (we normalize
the states ξ and ξ̇ to [−1, 1]). We set the step-size schedule
parameters for the second experiment at β0 = 0.1 and
βc = 1000.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Improved policy after each iteration (CIPG-RRC: red shade; RLSTD-PG: blue shade; c-PG: black shade). The results are averaged over 20 runs.

Fig. 5. Inverted pendulum problem.

Fig. 6. Inverted pendulum: average steps.

The performances of the policies learned by the least-
squares-based AC algorithms and c-PG are shown in
Figs. 6 and 7. For each iteration, the improved policies by
these algorithms are executed 100 times to evaluate the average
numbers of balancing steps and the average probabilities

Fig. 7. Inverted pendulum: average probability of success.

of success. If a policy balances the pendulum over 3000 steps
in a run, we call it a successful run. CIPG-RRC performs
best among all the AC algorithms and returns very good
policy, given 15 training iterations. With 30 training iterations,
the expected number of balancing steps of CIPG-RRC is about
2800 steps. The success rate of CIPG-RRC increases fastest
among all algorithms at the first 15 iterations and converges
to 0.9 probability of success, which is higher than any other
algorithm’s success rate. Besides, algorithms CIPG-FRRC and
c-PG converge to a good policy and perform better than
RLSTD-PG after 15 training iterations.

C. Mountain Car

We now consider the mountain car problem suggested
in [46]. The task in this problem is to drive an underpowered
car to the top of a mountain (shown in Fig. 8). At each time
step, three actions a are allowed: full throttle forward (+1), full
throttle reverse (−1), and zero throttle (0). The car’s position
xt and velocity ẋt are updated by the following dynamic:{

xt+1 = xt + ẋt+1

ẋt+1 = ẋt + 0.001u − 0.0025 cos(3xt)
(33)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ACTOR-CRITIC LEARNING CONTROL BASED ON �2-REGULARIZED TD PREDICTION 9

Fig. 8. Mountain car problem.

Fig. 9. Mountain car: average steps.

where xt+1 ∈ [−1.2, 0.5] and ẋt+1 ∈ [−0.07, 0.07].
ẋt+1 resets to 0 when the car reaches the left bound
of xt+1.

Reward 1 is given as long as the car reaches the goal
x = 0.5; otherwise, the reward is 0 at each time step. For the
state s = (x, ẋ), the state feature vectors and the state-action
feature vectors have the same form as the second experiment
except that the centers ki have 12 points of the grid {−1.1,
−0.6, −0.1, 0.4}×{−0.7, 0, 0.7} and σ = 0.5 (we normalize
the state ẋ to [−1, 1]) and the step-size schedule parameters
for the this problem are set at β0 = 0.1 and βc = 1000.

The performances of the policies learned by the pro-
posed two algorithms, RLSTD-PG and c-PG, are shown in
Figs. 9 and 10. For each iteration, the learned policies by
these algorithms are executed 100 times to evaluate the average
number of steps and the probability of success. If a policy
drives the car to the goal within 5000 steps in a run, then we
call it a successful run. RLSTD-PG, CIPG-RRC, and CIPG-
FRRC return good policies after a few number of iterations.
With three iterations (3000 samples), the average number of
steps of these three algorithms is less than 800 steps and the
probability of success is 100%. The c-PG performs worse than
least-squares-based AC methods in this task. c-PG needs more
than seven iterations (7000 samples) to achieve a good policy:
the expected number of steps is about 1200 and the probability
of success is 93.8%. After only two iterations (2000 samples),

Fig. 10. Mountain car: average probability of success.

CIPG-RRC and RLSTD-PG converge to an optimal policy
with the probability of 1.

VI. CONCLUSION

In this paper, the problem of how to use RLS-based
algorithm in the AC framework is studied. Two RLS-based
AC algorithms were proposed, namely, CIPG with a sustain-
able �2-regularized RLS-TD learning with gradient correction
(CIPG-RRC). Furthermore, we also use a fast sustainable �2-
regularized RC to reduce the O(n3) computational complexity
of CIPG-RRC to O(n2), a low computational complexity
counterpart termed CIPG-FRRC was derived. These AC algo-
rithms can avoid the difficulty of tuning the step size in the
critic on the contrary to conventional first-order PG-based AC
algorithms, and sustain the �2-regularization effect during the
learning process. From convergence analysis, it was found that
RRC and FRRC converged to a fixed point that sustained the
effect of �2-regularization throughout the learning processes
and the actor converged to the locally optimal policy under
the critic and value function approximation. The simulation
results showed that CIPG-RRC and CIPG-FRRC are efficient
methods for learning control problems with �2-regularization.
The �2-norm of the sustainable �2-regularized algorithms
remained more stable during the learning process, as com-
pared with the conventional RLS-TD learning algorithms.
CIPG-RRC and CIPG-FRRC achieved high convergence rates
on the 20-state chain walk, the inverted pendulum, and the
mountain car tasks, using the samples generated by the i.i.d.
sampling method. These two algorithms have more determinis-
tic parametric probability distributions than conventional PG-
based AC algorithms. Hence, these two AC algorithms are
efficient options for learning control tasks.

Based on the CIPG-RRC and CIPG-FRRC algorithms pro-
posed in this paper, further works may include the following
aspects: 1) the computational complexity of the proposed algo-
rithms could be further reduced for online learning problems;
2) some recent advanced PG algorithms can be incorporated
to improve the performance of the proposed AC framework;
and 3) the real-world applications of our algorithms should be
studied.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

REFERENCES

[1] C. Szepesvári, Algorithms for Reinforcement Learning. San Rafael, CA,
USA: Morgan and Claypool Publishers, Jun. 2010.

[2] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems 12. Cambridge,
MA, USA: MIT Press, Nov. 2000, pp. 1057–1063.

[3] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM J.
Control Optim., vol. 42, no. 4, pp. 1143–1166, 2003.

[4] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
nos. 7–9, pp. 1180–1190, Mar. 2008.

[5] B. Luo, D. Liu, H.-N. Wu, D. Wang, and F. L. Lewis, “Policy gradient
adaptive dynamic programming for data-based optimal control,” IEEE
Trans. Cybern., vol. 47, no. 10, pp. 3341–3354, Oct. 2017.

[6] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. (2015).
“High-dimensional continuous control using generalized advantage esti-
mation.” [Online]. Available: https://arxiv.org/abs/1506.02438

[7] R. Song, F. Lewis, Q. Wei, H.-G. Zhang, Z.-P. Jiang, and D. Levine,
“Multiple actor-critic structures for continuous-time optimal control
using input-output data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 4, pp. 851–865, Apr. 2015.

[8] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
Aug. 2012.

[9] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general
utility function representation for dual heuristic dynamic programming,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 614–627,
Mar. 2015.

[10] X. Xu, Z. Hou, C. Lian, and H. He, “Online learning control using
adaptive critic designs with sparse kernel machines,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 24, no. 5, pp. 762–775, May 2013.

[11] H. Zhang, L. Cui, X. Zhang, and Y. Luo, “Data-driven robust approx-
imate optimal tracking control for unknown general nonlinear systems
using adaptive dynamic programming method,” IEEE Trans. Neural
Netw., vol. 22, no. 12, pp. 2226–2236, Dec. 2011.

[12] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[13] H. Zhang, H. Liang, Z. Wang, and T. Feng, “Optimal output regulation
for heterogeneous multiagent systems via adaptive dynamic program-
ming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 1, pp. 18–29,
Jan. 2017.

[14] B. Luo et al., “Output tracking control based on adaptive dynamic
programming with multistep policy evaluation,” IEEE Trans. Syst., Man,
Cybern., Syst., to be published.

[15] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor–critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
Nov. 2009.

[16] B. Kim, J. Park, S. Park, and S. Kang, “Impedance learning for robotic
contact tasks using natural actor-critic algorithm,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 40, no. 2, pp. 433–443, Apr. 2010.

[17] B. Luo, H.-N. Wu, and T. Huang, “Optimal output regulation for model-
free Quanser helicopter with multi-step Q-learning,” IEEE Trans. Ind.
Electron., vol. 65, no. 6, pp. 4953–4961, Jun. 2018.

[18] O. Tutsoy, D. E. Barkana, and S. Colak, “Learning to balance an NAO
robot using reinforcement learning with symbolic inverse kinematic,”
Trans. Inst. Meas. Control, vol. 39, no. 11, pp. 1735–1748, Apr. 2016.

[19] O. Tutsoy, “CPG based RL algorithm learns to control of a humanoid
robot leg,” Int. J. Robot. Autom., vol. 30, no. 2, pp. 1–7, 2015.

[20] H. R. Berenji and D. Vengerov, “A convergent actor-critic-based FRL
algorithm with application to power management of wireless transmit-
ters,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 478–485, Aug. 2003.

[21] D. Vengerov, N. Bambos, and H. R. Berenji, “A fuzzy reinforcement
learning approach to power control in wireless transmitters,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 35, no. 4, pp. 768–778, Aug. 2005.

[22] S. Xie, W. Zhong, K. Xie, R. Yu, and Y. Zhang, “Fair energy scheduling
for vehicle-to-grid networks using adaptive dynamic programming,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1697–1707,
Aug. 2016.

[23] S. Richter, D. Aberdeen, and J. Yu, “Natural actor-critic for road traffic
optimisation,” in Proc. 20th Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, Dec. 2007, pp. 1169–1176.

[24] L. Chun-Gui, W. Meng, S. Zi-Gaung, L. Fei-Ying, and Z. Zeng-Fang,
“Urban traffic signal learning control using fuzzy actor-critic methods,”
in Proc. 5th Int. Conf. Natural Comput., Tianjin, China, Aug. 2009,
pp. 368–372.

[25] C. V. L. Raju, Y. Narahari, and K. Ravikumar, “Reinforcement
learning applications in dynamic pricing of retail markets,” in Proc.
IEEE Int. Conf. E-Commerce, Newport Beach, CA, USA, Jun. 2003,
pp. 339–346.

[26] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988.

[27] M. Geist and B. Scherrer, “Off-policy learning with eligibility traces:
A survey,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 289–333,
Jan. 2014.

[28] R. S. Sutton et al., “Fast gradient-descent methods for temporal-
difference learning with linear function approximation,” in Proc.
26th Int. Conf. Mach. Learn., Montreal, QC, Canada, Jul. 2009,
pp. 993–1000.

[29] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms
for temporal difference learning,” Mach. Learn., vol. 22, nos. 1–3,
pp. 33–57, Jan. 1996.

[30] J. A. Boyan, “Technical update: Least-squares temporal difference
learning,” Mach. Learn., vol. 49, nos. 2–3, pp. 233–246, Nov. 2002.

[31] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.
Learn. Res., vol. 4, no. 6, pp. 1107–1149, Dec. 2004.

[32] T. Song, D. Li, L. Cao, and K. Hirasawa, “Kernel-based least squares
temporal difference with gradient correction,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 4, pp. 771–782, Apr. 2016.

[33] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Trans. Neural Netw., vol. 18, no. 4,
pp. 973–992, Jul. 2007.

[34] A. M. Farahmand, M. Ghavamzadeh, C. Szepesvári, and
S. Mannor, “Regularized policy iteration,” in Advances in Neural Infor-
mation Processing Systems. Cambridge, MA, USA: MIT Press, 2008,
pp. 441–448.

[35] A. M. Farahmand, M. Ghavamzadeh, C. Szepesvari, and S. Mannor,
“Regularized fitted Q-iteration for planning in continuous-space
Markovian decision problems,” in Proc. Amer. Control Conf., St. Louis,
MO, USA, Jun. 2009, pp. 725–730.

[36] M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos, “Regu-
larized least squares temporal difference learning with nested �2 and �1
penalization,” in Proc. 9th Eur. Conf. Recent Adv. Reinforcement Learn.,
Athens, Greece, 2012, pp. 102–114.

[37] D.-R. Liu, H.-L. Li, and D. Wang, “Feature selection and feature learning
for high-dimensional batch reinforcement learning: A survey,” Int. J.
Autom. Comput., vol. 12, no. 3, pp. 229–242, Jun. 2015.

[38] T. Song and D. Li, “Online �2-regularized reinforcement learning via
RBF neural network,” in Proc. 28th Chin. Control Decision Conf.,
Yinchuan, China, May 2016, pp. 6627–6632.

[39] J. Park, J. Kim, and D. Kang, “An RLS-based natural actor-critic
algorithm for locomotion of a two-linked robot arm,” in Computa-
tional Intelligence and Security (Lecture Notes in Computer Science),
vol. 3801. Berlin, Germany: Springer-Verlag, 2005, pp. 65–72.

[40] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” presented at the 3rd IEEE-RAS Int. Conf. Human
Robots, Karlsruhe, Germany, Sep. 2003, pp. 1–20.

[41] X. Xu, H.-G. He, and D. Hu, “Efficient reinforcement learning using
recursive least-squares methods,” J. Artif. Intell. Res., vol. 16, no. 1,
pp. 259–292, Jan. 2002.

[42] O. Tutsoy and S. Colak, “Adaptive estimator design for unstable output
error systems: A test problem and traditional system identification based
analysis,” in Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., vol. 229,
no. 10, pp. 902–916, Nov. 2015.

[43] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

[44] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in Proc. Amer. Control
Conf. (ACC), Montreal, QC, Canada, Jun. 2012, pp. 2177–2182.

[45] R. S. Sutton, C. Szepesvári, and H. R. Maei, “A convergent O(n)
temporal-difference algorithm for off-policy learning with linear func-
tion approximation,” in Proc. Conf. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2009, pp. 1609–1616.

[46] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ACTOR-CRITIC LEARNING CONTROL BASED ON �2-REGULARIZED TD PREDICTION 11

Luntong Li received the B.S. degree in automa-
tion and the M.S. degree in control science and
engineering from the Department of Automation,
Beijing University of Chemical Technology, Beijing,
China, in 2013 and 2016, respectively, where he is
currently pursuing the Ph.D. degree with the College
of Information Science and Technology.

His current research interests include rein-
forcement learning and approximate dynamic
programming.

Dazi Li received the Ph.D. degree in engineer-
ing from the Department of Electrical and Elec-
tronic Systems, Kyushu University, Fukuoka, Japan,
in 2004.

She is currently a Full Professor of automatic con-
trol and the Chair of the Department of Automation,
College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing,
China. Her research interests include machine learn-
ing and artificial intelligence, advanced process
control, complex system modeling and optimization,

and fractional calculus system. She is currently an Associate Editor of ISA
Transactions.

Tianheng Song received the M.S. and Ph.D.
degrees in control science and engineering from the
Department of Automation, Beijing University of
Chemical Technology, Beijing, China, in 2011 and
2016, respectively.

Since 2017, he has been holding a post-doctoral
position at the College of Information Science
and Technology, Beijing University of Chemical
Technology. His current research interests include
reinforcement learning and neural networks.

Xin Xu (M’07–SM’12) received the B.S. degree
in electrical engineering from the Department of
Automatic Control, National University of Defense
Technology (NUDT), Changsha, China, in 1996, and
the Ph.D. degree in control science and engineering
from the College of Mechatronics and Automation,
NUDT, in 2002.

He is currently a Full Professor with the College
of Mechatronics and Automation, NUDT. He has
authored or co-authored over 150 papers in inter-
national journals and conferences, and co-authored

four books. His research interests include reinforcement learning, approximate
dynamic programming, machine learning, robotics, and autonomous vehicles.

Dr. Xu was a recipient of the Second Class National Natural Science
Award of China in 2012. He is a Committee Member of the IEEE RAS
Technical Committee on Approximate Dynamic Programming and Reinforce-
ment Learning and the IEEE CIS Technical Committee on Robot Learning.
He is currently an Associate Editor of Information Sciences and a Guest
Editor of the IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS:
SYSTEMS.

